Analytic function

A function that can be locally represented by power series. Such functions are usually divided into two important classes: the real analytic functions and the complex analytic functions, which are commonly called holomorphic functions. This entry concerns the latter: the reader is referred to Real analytic function for the first class.

The exceptional importance of the class of analytic functions is due to the following reasons. First, the class is sufficiently large; it includes the majority of functions which are encountered in the principal problems of mathematics and its applications to science and technology. Secondly, the class of analytic functions is closed with respect to the fundamental operations of arithmetic, algebra and analysis. Finally, an important property of an analytic function is its uniqueness: Each analytic function is an "organically connected whole" , which represents a "unique" function throughout its natural domain of existence. This property, which in the 18th century was considered as inseparable from the very notion of a function, became of fundamental significance after a function had come to be regarded, in the first half of the 19th century, as an arbitrary correspondence. The theory of analytic functions originated in the 19th century, mainly due to the work of A.L. Cauchy, B. Riemann and K. Weierstrass. The "transition to the complex domain" had a decisive effect on this theory. The theory of analytic functions was constructed as the theory of functions of a complex variable; at present (the 1970's) the theory of analytic functions forms the main subject of the general theory of functions of a complex variable.

Contents